Package: SiER 0.1.0

SiER: Signal Extraction Approach for Sparse Multivariate Response Regression

Methods for regression with high-dimensional predictors and univariate or maltivariate response variables. It considers the decomposition of the coefficient matrix that leads to the best approximation to the signal part in the response given any rank, and estimates the decomposition by solving a penalized generalized eigenvalue problem followed by a least squares procedure. Ruiyan Luo and Xin Qi (2017) <doi:10.1016/j.jmva.2016.09.005>.

Authors:Ruiyan, Xin Qi

SiER_0.1.0.tar.gz
SiER_0.1.0.zip(r-4.5)SiER_0.1.0.zip(r-4.4)SiER_0.1.0.zip(r-4.3)
SiER_0.1.0.tgz(r-4.4-any)SiER_0.1.0.tgz(r-4.3-any)
SiER_0.1.0.tar.gz(r-4.5-noble)SiER_0.1.0.tar.gz(r-4.4-noble)
SiER_0.1.0.tgz(r-4.4-emscripten)SiER_0.1.0.tgz(r-4.3-emscripten)
SiER.pdf |SiER.html
SiER/json (API)

# Install 'SiER' in R:
install.packages('SiER', repos = c('https://rruiyan.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.00 score 4 scripts 413 downloads 1 mentions 3 exports 0 dependencies

Last updated 7 years agofrom:cd22b18850. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 31 2024
R-4.5-winOKOct 31 2024
R-4.5-linuxOKOct 31 2024
R-4.4-winOKOct 31 2024
R-4.4-macOKOct 31 2024
R-4.3-winOKOct 31 2024
R-4.3-macOKOct 31 2024

Exports:cv.SiERgetcoef.SiERpred.SiER

Dependencies: